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Introduction

Introduction

Many applications require organizing personal names in a consistent
format.

Library catalogs and bibliographies mention the last name first.
Common requirement for author metadata at the National Digital
Library of India (NDLI).

Difficult to write a rule-based system due to diversity of names.

We explore a deep learning-based approach for segmenting person
names autormatically.
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Related Work

Related Work

Existing techniques are of 3 types: (1) rule-based, (2) statistical
learning-based, and (3) hybrid.

Statistical learning techniques either use generative models like HMM
or discriminative models like CRFs.

HMM is used for address and name segmentation in [1].
References [2] and [3] employed HMMs to normalize Australian person
names and person names in medical databases respectively.
Das et al. [4] used CRF for parsing names in a LinkedIn dataset.

The choice of the model often depends on the application with no
clear winner among them [5].

Deep learning is very popular nowadays [6]. Recurrent Neural
Networks (RNNs) look promising for our problem.
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Problem Definition

Problem Definition

Input sequence X =< x1, x2, · · · , xn > comprises the components in
the name.

Target sequence Y =< y1, y2, · · · , yn > comprises the labels of the
components.

Example:

Name: Sharma Ramesh Chandra

Input sequence: X = <Sharma, Ramesh, Chandra>

Target sequence: Y = <LN, RN, RN>

In practice, we seek Y ∗ that maximizes the conditional probability
p(Y |X ,Λ) where Λ is the set of model parameters:

Y ∗ = arg max
Y

p(Y |X ,Λ) (1)

p(Y |X ,Λ) = p(y1, · · · , yn|x1, · · · xn,Λ) (2)
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Contributions

Contributions

We use RNN-based model to segment person names automatically.

We evaluate our model on a large corpus of person names from NDLI.
It shows an accuracy of 94% while an HMM produces 83.5% accuracy.

We show visualizations of the learned representations.
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RNN-Based Segmenter

RNN-Based Segmenter
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Figure: BiLSTM to segment person names.
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RNN-Based Segmenter

RNN-Based Segmenter

Two models variants with different the output layers have been
designed:

1 BiLSTM with softmax layer.
2 BiLSTM with CRF layer.

Each of the above architectures is again subdivided into three types
based on the input:

1 word level.
2 character level.
3 word + character level.
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HMM-Based Segmenter (contd.)

HMM-Based Segmenter (contd.)

As an alternative to the deep learning model, a Hidden Markov Model
(HMM) has been designed to map name components to states.

states ∈ {START,LN,SFX,RN,END};
n × n state transition matrix A = [aij ];
n ×m emission probability matrix B = [bjk ] where bjk = bj(wk), the
probability of emitting symbol wk in state j :
aij = Number of transitions from state i to state j

Total number of transitions out of state i

bj(wk) = Number of times wk is emitted from state j
Total number of symbol-emissions from state j

The Viterbi algorithm is applied to find the most likely state sequence
Y ∗ that is generated by the input sequence X .
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HMM-Based Segmenter (contd.)

HMM-Based Segmenter (contd.)

We use the following 2 smoothing techniques separately.

1 Laplace Smoothing: we choose a pseudocount µ = 1 and assume that
each symbol in V appears at least µ times so that [UNK] does not get
zero probability.

2 Absolute Discounting:

We subtract δ > 0 from the emission probability of each known symbol
wk emitted from state j . So, new emission probability of wk is
b′j (wk) = bj(wk)− δ in state j .
The total subtracted probability is divided equally among the symbols
not seen in state j .
Thus, if Tj unique symbols are seen in state j during training, the

probability of an unseen symbol to be emitted from state j is
Tjδ

m−Tj
.

We choose δ = 1
Tj+m

[1].
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Dataset

Dataset

Our corpus contains author names from IEEE publications indexed in
NDLI.

Names are in <LN+, SFX?, RN+> format.

We remove all separating commas and augment the dataset by
circular right-shifting each name so that there are <RN+, LN+,

SFX?> names, too. Otherwise, the segmenter will only learn to output
<LN+, SFX?, RN+>.

Corpus is divided in 80 : 20 ratio into training and test subsets.

Training subset holds 1.3 million author names.
Test subset holds 0.34 million author names.
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Dataset (contd.)

Dataset (contd.)

2 (60.4%)

3 (35.2%)

4 (3.8%)

REM (0.6%)

(a) Training corpus. REM comprises names
of lengths 1,5,6,7,8,9.

2 (60.4%)

3 (35.3%)

4 (3.7%)

REM (0.6%)

(b) Test corpus. REM comprises names of
lengths 1,5,6,7,8,9.

Figure: Distribution of the number of components in an author name in the
corpus.
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Results (RNN)

Results

Model Vocabulary size (#words) Accuracy (%)

WordEmb-BiLSTM-SoftMax 30K 90.05

CharacterEmb-BiLSTM-SoftMax X 93.78

(Word+Char)Emb-BiLSTM-SoftMax 30K 92.64

WordEmb-BiLSTM-CRF 30K 91.85

CharacterEmb-BiLSTM-CRF X 93.97
(Word+Char)Emb-BiLSTM-CRF 30K 93.09

Table: Performance of deep learning-based segmenters.
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Results (RNN)

Results (HMM)

Vocabulary size (#words) Smoothing function Accuracy (%)

30K Laplace 83.5

30K Absolute discounting 81.98

Table: Performance of HMM-based segmenter.
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Visualization of Learned Representations

Visualization of Learned Representations

Figure: Name embeddings clustered with DBSCAN
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Summary and Future Work

Summary and Future Work

We presented a novel deep learning-based name segmentation
technique.

The character BiLSTM with CRF achieved an accuracy of 94%.

BiLSTM with CRF outperformed BiLSTM with softmax and both
vastly outperformed HMM.

Character model was found superior to word or combination models
for the name segmentation task.

Our results set a baseline for more complex name segmentation
techniques.

We would also explore if active learning can increase the accuracy
further.
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